Elastic self-healing during shear accommodation in crystalline nanotube ropes.

نویسندگان

  • Haiyi Liang
  • Moneesh Upmanyu
چکیده

Rigid-tube computations of simple (transverse) shear in crystalline nanotube ropes (CNTRs) reveal that shear modulus and strength increase and decrease with the tube radius, respectively. High modulus to strength ratios suggest that dislocations play a minor role during their plasticity. The computed shear moduli are in agreement with previous studies, although shape change and rolling-based shear may modify low strain and temperature behavior. The instability past the shear strength is due to shear localization via interlayer sliding, wherein stress relief results in significant elastic energy dissipation. Large-tube radius CNTRs accommodate large strains at minimal energetic cost during sliding, due to the increasingly cohesive and short range nature of the intertube potential. Fascinatingly, the crystal aids its recovery, implying that CNTRs may be promising materials for energy absorption and tribology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limits of mechanical energy storage and structural changes in twisted carbon nanotube ropes

Arrays of twisted carbon nanotubes and nanotube ropes are equivalent to a torsional spring capable of storing energy. The advantage of carbon nanotubes over a twisted rubber band, which is used to store energy in popular toys, is their unprecedented toughness. Using ab initio and parametrized density functional calculations, we determine the elastic range and energy storage capacity of twisted ...

متن کامل

The Effect of Elastic Foundations on the Buckling Behavior of Functionally Graded Carbon Nanotube-Reinforced Composite Plates in Thermal Environments Using a Meshfree Method

The buckling behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates resting on Winkler-Pasternak elastic foundations under in-plane loads for various temperatures is investigated using element-free Galerkin (EFG) method based on first-order shear deformation theory (FSDT). The modified shear correction factor is used based on energy equivalence principle. Carbon ...

متن کامل

Nanomechanical energy storage in twisted nanotube ropes.

We determine the deformation energetics and energy density of twisted carbon nanotubes and nanotube ropes that effectively constitute a torsional spring. Using ab initio and parametrized density functional calculations, we identify structural changes in these systems and determine their elastic limits. The deformation energy of twisted nanotube ropes contains contributions associated not only w...

متن کامل

Thermoelectric Power of Single-Walled Carbon Nanotubes

We have measured the temperature-dependent thermoelectric power (TEP) of crystalline ropes of single-walled carbon nanotubes. The TEP is large and holelike at high temperatures and approaches zero as T ! 0. The results argue against the opening of a gap at low temperature in these materials. When derived from a simple band structure picture, the TEP of a single metallic nanotube is significantl...

متن کامل

Mass-production of boron nitride double-wall nanotubes and nanococoons

Various techniques including plasma-arc, laser ablation, and chemical vapor-phase synthesis have been employed to Ž . produce bulk amounts of non-carbon such as boron nitride, BN nanotubes with some success, but in general the yields are low. We describe a new high-yield plasma-arc method that easily and reliably produces macroscopic amounts of pure BN nanotubes. Interestingly, the method produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 94 6  شماره 

صفحات  -

تاریخ انتشار 2005